If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4w^2+4w=1=75
We move all terms to the left:
4w^2+4w-(1)=0
a = 4; b = 4; c = -1;
Δ = b2-4ac
Δ = 42-4·4·(-1)
Δ = 32
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$w_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$w_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{32}=\sqrt{16*2}=\sqrt{16}*\sqrt{2}=4\sqrt{2}$$w_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(4)-4\sqrt{2}}{2*4}=\frac{-4-4\sqrt{2}}{8} $$w_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(4)+4\sqrt{2}}{2*4}=\frac{-4+4\sqrt{2}}{8} $
| X^2+20x-270=0 | | 3x+4-7x=8+x | | 6x-10+2x+18=180 | | 3x+4-7x=8 | | x-12x-9=9-11x | | 9=u÷2 | | ^2+7x-1110=0 | | 8x-4=24+3+(2x-10) | | v÷4=7 | | -4p–4=16 | | 4t^2=t+6 | | 3(2y+2)^2-(48)=0 | | 7.5x=142 | | -11+x=x+13 | | 12/40=b/10 | | 3y=+6y | | (2x+20)+(3x-10)=180 | | 7-4x-3=-x+9 | | 5+9y=-7-8y | | x^2+6x+7=0. | | 16x-4^2=0 | | 5(3m-6)=3(4m+2) | | X=13x-9x | | 3m+2(m-3)=19 | | 13x-9x=9x-13x | | -0.5(1-2x)+x=0.75x+2 | | 8y+8=4y | | 8x-34=7 | | 3(4−13x)=−2x−10+x | | 67=6x+19 | | -3(c-5)=3×+9 | | 83n=913n= |